

1 **Title**

2 **Attitudes and Practice Behaviors of Resident Physicians Surrounding Cancer Screening**

3 **Authors**

4 Paige Bentley MS, OMS-III¹, Madison Bieganski MS, OMS-III¹, Kevin Ells OMS-II¹, Zachary Ryan MS,
5 OMS-II¹, Isain Zapata PhD², Joel Roberts MD^{3†}

6 **Affiliations**

7 1 Rocky Vista University, College of Osteopathic Medicine, Englewood, CO 80112

8 2 Department of Biomedical Sciences, Rocky Vista University, Englewood, CO 80112

9 3 Master of Science in Biomedical Sciences, Rocky Vista University, Englewood, CO 80112

10 † Corresponding author: Joel Roberts MD. Address: 8401 S. Chambers Rd. Englewood, CO 80112 Email:
11 jroberts@rvu.edu

12 **Author contributions**

13 PB: Conceptualization, Methodology, Investigation, Writing - Original Draft, Writing – Review & Editing

14 MB: Conceptualization, Methodology, Investigation.

15 KE: Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing

16 ZR: Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing

17 IZ: Methodology, Formal analysis, Writing – Review & Editing, Visualization

18 JR: Conceptualization, Methodology, Investigation, Writing – Review & Editing, Supervision

19 **Conflict of interest**

20 None of the authors have a conflict of interest to declare in relation to this study.

21 **Data Sharing Statement**

22 Unidentified data generated in this study can be made available with a reasonable request to the
23 corresponding author.

24 **Funding**

25 No special funding was received for this study.

26 **Abstract**

27 The early detection of cancer is widely acknowledged as crucial for saving lives. Screening programs
28 have significantly reduced mortality rates associated with cervical, breast, and colorectal cancers over
29 the past few decades. However, inconsistencies in screening guidelines among healthcare providers
30 raise concerns about the uniformity of recommendations. This study investigates the practice behaviors,
31 attitudes, and knowledge of cancer screening guidelines among medical residents in family medicine,
32 internal medicine, and general surgery. A multi-institution survey was conducted, with 72 resident
33 physicians participating. The study explores the sources from which residents acquire screening
34 guidelines and evaluates their accuracy in recommending screening ages for colorectal, breast, and
35 cervical cancers. Results indicate a preference for guidelines from the United States Preventive Services
36 Task Force (USPSTF), although there are variations in recommendations among specialties. While
37 residents demonstrate good knowledge of cervical cancer screening, they exhibit inconsistencies in
38 breast cancer screening ages. Conflicting guidelines are perceived to impact patients' quality of care and
39 confidence in the healthcare system. Residents primarily learn screening recommendations during
40 medical school, highlighting the importance of early education. The study underscores the need for
41 streamlined and consistent guidelines to mitigate confusion among providers and patients. Further
42 research is needed to address these findings and improve patient care.

49 research is recommended to explore the objective impacts of guideline variability on screening practices
50 and patient outcomes, especially in the context of advancing technologies like artificial intelligence.

51

52 **Prevention Relevance**

53 Cancer screening programs are proven for improving patient outcomes but are often inconsistent across
54 the organizations making the recommendations. This inconsistency can create confusion and hurt the
55 patients' and providers' trust relationships. This study explores the knowledge, consistency and
56 perceptions of physician residents on cancer screening guidelines. This study provides context that can
57 be used to improve cancer screening training for residents.

58 **INTRODUCTION**

59 It is a common consensus among healthcare professionals that early detection of cancer can
60 save lives (1,2). Screening has helped lower death rates in the United States related to cervical, breast,
61 and colorectal cancers for several last decades (3,4). This raises the question of whether healthcare
62 providers in different specialties and even within the same specialty use the same resources when
63 recommending preventative screenings for their patients. These statistics further illustrate the
64 importance of creating unified cancer screening recommendations. There are inconsistent guidelines
65 among varying governing bodies in the United States with variability in nearly all metrics in
66 consideration (5). Moreover, when looking at a comparison of medical preventative service
67 recommendations in Canada, France, and the United States, only 26% of these recommendations were
68 in “strong agreement” suggesting inconsistencies among providers in similar nations. United States was
69 the only country to demonstrate clear differences in terms of screening recommendations coming from
70 national guideline committees, cancer societies, or specialty societies (6). Disagreement among nations
71 may be due to cultural factors, but this would not explain variation within the United States.

72 To date, there is a small but significant body of literature on cancer screening guideline usage
73 among US physicians (7–10) . Provider surveys are a frequently and effective way used to elucidate
74 practice behaviors and resources utilized and to form a platform for exploring meaningful change (11–
75 17). Lack of adequate knowledge of screening guidelines has been suggested as a contributing factor to
76 underutilization of appropriate screening and other best practices, and it is plausible, but unexplored
77 where providers learn their screening approach and perceived impact of differing guidelines on patient’s
78 and providers. Beyond these provider shortcomings, patients have also questioned screening guidelines,
79 expressing uncertainty of financial motives by governing bodies and racial disparities inherently akin to
80 these guidelines (18). On a larger scale, given varying degrees of health literacy, some patients may not
81 even have knowledge of cancer, its risks, and the need for screening so would never prompt their
82 physician in the first place (19). Personal and cultural beliefs also play roles in acceptance of screenings
83 which may add an additional barrier for physicians seeking prophylactic care for their patients (20).

84 In the instance that resident physicians could be instructed on screening guidelines, it has been
85 shown that there is a knowledge gap in provider best practices due to lack of feedback from attending
86 to resident physicians (21,22). As mentioned above, it is under-explored how knowledge and practice
87 gaps may be impacted by variability among cancer screening guidelines regardless of where and how
88 they were acquired.

89 This study is a multi-institution survey that seeks the practice behaviors, attitudes, and
90 knowledge of cancer screening guidelines in medical residents in multiple medical specialties (internal
91 medicine, family medicine, general surgery). Additionally, the researchers plan to learn which resource
92 is most used to obtain such guidelines. Finally, this study aims to describe the perceived impact different
93 recommendations can have on a patient and provider.

94
95 **MATERIALS AND METHODS**

96
97 *Study design and participants*

98 This exploratory study uses survey methodology for a descriptive and exploratory design. A
99 convenience-based sample was used to select 20 residency programs in family medicine, internal
100 medicine, and general surgery. Across Colorado, these 20 programs had 427 members. Residency
101 programs contain members from a wide variety of regions across the United States, plausibly making
102 the sample data more generalizable. All participants were physicians in residence over 18. The
103 participants answered the survey questionnaire on their own time and voluntarily. No additional
104 exclusion criteria were included. The Rocky Vista University Institutional Review Board (IRB) approved as
105 exempt this research project (IRB # 2023-025).

106

107 *Questionnaire and survey distribution*

108 The questionnaire was designed by the investigators and improved for clarity and validity in
 109 collaboration with clinical faculty with experience teaching in medical schools and currently working
 110 with medical residents and using cancer screening guidelines. The questionnaire is available as
 111 **Supplementary File.** The questionnaire survey was electronically distributed using Qualtrics XM
 112 (Qualtrics International Inc., Provo, UT) to a point of contact at each of the 20 selected hospitals in the
 113 state of Colorado containing residency programs in family medicine, internal medicine, and general
 114 surgery. Responses were anonymous, with demographic data limited to age range and sex assigned at
 115 birth. Residency training specialty was identified with a question embedded in the survey, but no data
 116 was collected on the specific residency program. Incentives to participate in the study were completed
 117 (\$10 gift card), were offered as an optional step. For this they had to submit their email address which
 118 was disconnected from responses. Data was collected over a 24-week period from April 2023 to
 119 September 2023. Follow-up emails were distributed monthly afterward until the 24-week window had
 120 closed. Each participant had one opportunity for submission. Response rates or specific answers were
 121 not communicated to specific programs and all questionnaires were returned electronically, and
 122 answers to the survey were only accessible by the investigators.

123

124 *Response assessment and statistical analysis*

125 Data was analyzed descriptively and was summarized by response type and compiled in tables
 126 for visualization. The accuracy of individual responses (recommended age at average risk and
 127 recommended age at high risk) was corroborated against the guidelines they cited These
 128 recommendations are available as a **Supplementary file.** Participants were asked to cite their top two
 129 guidelines used. If the recommended age agreed with their top two guideline sources, the
 130 recommendation was graded as correct, otherwise it was graded as incorrect. Some guidelines do not
 131 have high risk age recommendation, therefore if the participant recommended an age that was different
 132 for the average risk, it was graded as incorrect. Guidelines change over the years and for this study they
 133 were compiled at the time of participant response (April-September 2023). Associations were assessed
 134 using contingency tables and exact probabilities, this was because of cell containing low counts.
 135 Significance was declared when observed cell values deviated from expected cell values at a $P \leq 0.05$. All
 136 analyses were performed in SAS v.9.4 (SAS Institute Inc., Cary NC)

137

138 **RESULTS**

139 A total of 72 resident physicians participated in the study. Of these, 50 (69.44%) were Family
 140 Medicine residents, 15 (20.83%) were Internal Medicine Residents and 7 (9.72%) were General Surgery
 141 residents. Post graduate year (PGY) representation was 21 (29.17%) PGY1, 25 (34.72%) PGY2, 23
 142 (31.94%) PGY3, 1 (1.39%) PGY4 and 2 (2.78%) PGY5+. Among all participants 42 (58.33%) were female
 143 and the age ranges were 14 participants (19.44%) between 18 and 28 years or age, 55 participants
 144 (76.39%) between the ages of 29-39 years and 3 participants (4.17%) over 40 years of age. The main
 145 source of learning participants cite as their guideline was medical school followed by their attending
 146 physician during residency, displayed in **Table 1**.

147

148 **Table 1.** Ranked response participants cited as their source of cancer screening guidelines.

Source	Rank First	Rank Second	Rank Third
Medical school	37	15	13
From their attending physician during medical school rotations	9	20	25

From their attending physician during residency	22	28	13
Experience prior to medical school	0	1	6
Personal experience with cancer diagnosis	0	3	3
Other	7	2	3

149

150 For colorectal cancers, the most frequently recommended age for average risk patients was 45
 151 years (69.44%) followed by 50 years (18.06%). For high-risk patients, the most frequently recommended
 152 age was 40 years (65.22%) followed by 45 years (15.94%). For mammography's, the most frequent
 153 recommended age for average risk patients was 50 years (48.61%) followed by 40 years (43.06%). For
 154 high-risk patients, the most frequently recommended age was 40 years (66.27%) followed by 30 years
 155 (10.14%). And last for Pap smears, the most frequent recommended age for average risk patients was 21
 156 years (88.73%) followed by 20 years (4.23%). For high-risk patients, the most frequently recommended
 157 age was 21 years (82.09%) followed by 18 years (8.96%). Frequency for specific organization guidelines
 158 referenced by participants is presented in **Table 2**.

159

160 **Table 2.** Specific organization guidelines referenced by participants from which they base their
 161 recommendations.

	Colorectal cancer		Mammography		Pap smear	
	Rank first	Rank second	Rank first	Rank second	Rank first	Rank second
American Association of Family Physicians	3	20	0	14	0	1
American Cancer Society	4	19	6	17	2	9
American College of Family Physicians					0	1
American College of Gastroenterology	0	1				
American College of Obstetrics and Gynecology			4	11	9	27
American College of Osteopathic Family Physicians	0	3			2	4
American College of Physicians	2	5	3	2	1	4
American College of Radiology			0	1		
American Society for Colposcopy and Cervical Pathology					1	0
National Comprehensive Cancer Network	3	3	1	3	1	0
Society of General Internal Medicine	1	1				
U.S. Multi-society Task Force on Colorectal Cancer	1	1				
U.S. Preventative Task Force	63	3	60	7	59	6
Emergency Medical Record Suggestion	1	5	0	4	0	4
I don't know					1	0

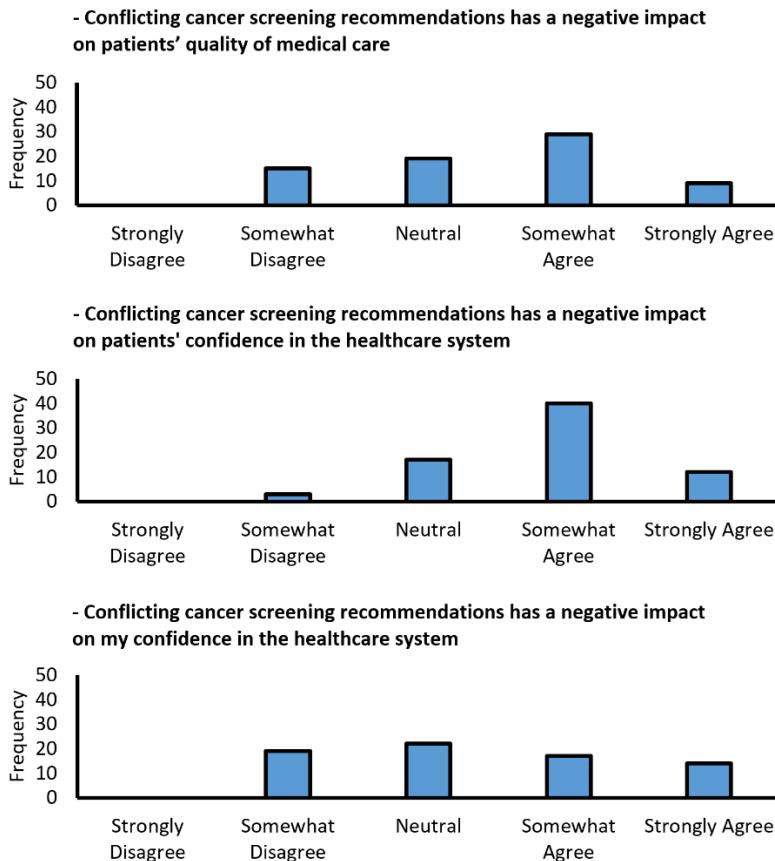
162

163 Grading of participant recommendations is presented in **Table 3**. The proportions of correct
 164 recommendations vary by screening but are more often incorrect when recommending a
 165 mammography. In contrast the recommendations are more often correct for pap smears. When
 166 evaluating subsets, general surgery residents significantly made more incorrect recommendations on
 167 both average and high-risk pap smears ($P=0.0134$ and $P=0.0014$ respectively). There was also a gender
 168 discrepancy in their average risk colorectal cancer screening recommendations ($P=0.0436$). A
 169 discrepancy in PGY4 was also evident ($P=0.0444$) for pap smear recommendations. Last age group

170 differences were observed in high-risk mammography recommendation and average risk pap smear
171 recommendations ($P=0.0171$ and $P=0.0377$ respectively).

172

173 **Table 3.** Grading of recommendations against the respective guidelines cited by participants.


	Colorectal cancer		Mammography		Pap smear	
	Average risk Correct	High risk Correct	Average risk Correct	High risk Correct	Average risk Correct	High risk Correct
Full dataset	47 (65.28%)	41 (59.42%)	29 (40.28%)	18 (26.09%)	62 (87.32%)	54 (80.60%)
By Specialty						
Family Medicine	33 (66.00%)	26 (55.32%)	19 (38.00%)	10 (21.28%)	47 (94.00%)	43 (91.49%)
Internal Medicine	10 (66.67%)	11 (73.33%)	7 (46.67%)	7 (46.67%)	11 (78.57%)	9 (64.29%)
General Surgery	4 (57.14%)	4 (57.14%)	3 (42.86%)	1 (14.29%)	4 (57.14%)*	2 (33.33%)*
by gender						
Female	23 (54.76%)*	24 (60.00%)	15 (35.71%)	9 (22.50%)	39 (92.86%)	33 (82.50%)
Male	24 (80.00%)*	17 (58.62%)	14 (46.67%)	9 (31.03%)	23 (79.31%)	21 (77.78%)
By PGY						
PGY1	13 (61.90%)	12 (60.00%)	12 (57.14%)	9 (42.86%)	18 (85.71%)	14 (73.68%)
PGY2	14 (56.00%)	14 (56.00%)	9 (36.00%)	6 (25.00%)	24 (96.00%)	20 (83.33%)
PGY3	17 (73.91%)	13 (61.90%)	7 (30.43%)	2 (9.52%)	19 (86.36%)	19 (86.36%)
PGY4	1 (100.0%)	1 (100.0%)	1 (100.0%)	0 (0.00%)	0 (0.00%)*	0 (0.00%)
PGY5+	2 (100.0%)	1 (50.00%)	0 (0.00%)	1 (50.00%)	1 (50.00%)	1 (50.00%)
By age						
18 to 28 years	7 (50.00%)	10 (71.43%)	8 (57.14%)	8 (57.14%)*	12 (85.71%)	10 (71.43%)
29 to 39 years	37 (67.27%)	30 (57.69%)	21 (38.18%)	9 (17.31%)	49 (90.74%)	43 (84.31%)
40 years or older	3 (100.0%)	1 (33.33%)	0 (0.00%)	1 (33.33%)	1 (33.33%)*	1 (50.00%)

174 * Significantly different proportion from expected proportion under H0

175

176 Participants expressed their concern on conflicting guidelines in terms of quality of medical care,
177 patients' confidence in the healthcare system and their own personal confidence of the healthcare
178 system. These concerns are presented in **Figure 1**. Because participants are aware of the discrepancies
179 in guidelines, they were asked to refer to their preferred sources for informing their own practice
180 approach for screenable cancers. They referred to organization publications more often followed by
181 their attending recommendation and then to their own clinical experience too.

182

183
184 **Figure 1.** Response concerns on conflicting guidelines in terms of quality of medical care, patients'
185 confidence in the healthcare system and their own personal confidence of the healthcare system.
186

187 **DISCUSSION**

188 While other studies have investigated which resource was the most widely used (7–10) this
189 study is the first of its kind to investigate not only what resources are used and patterns of screening
190 behavior, but additionally where they learned _{red} their current practice approach and _{red} their perceptions on
191 the impact of conflicting recommendations for patients and for themselves. We sought to learn
192 behaviors within a small geographic area to see how different resident physicians would recommend
193 when to screen for colorectal, breast and cervical cancers. The differing responses around guidelines and
194 where they were learned alone gives insight into the larger public health issue of inconsistencies in
195 screening recommendations.

196 Overall residents choose to rely on recommendations from governing bodies, such as the United
197 States Preventative Services Task Force (USPSTF) but show statistically significant differences in the ages
198 they begin screening for cancers. This contrasts from past work, where USPSTF recommendations have
199 been rated as less influential than recommendations by the ACS, ACOG, or AAFP by internal medicine
200 and family practice physicians for breast and cervical cancer screening (7). When it came to the source or
201 governing body of choice USPSTF was consistently chosen as the first reference for resident physicians
202 regardless of the type of cancer being screened for and the specialty the physician belonged to. This
203 study demonstrated an 87.5% preference for referencing USPSTF before any other resource when it
204 came to colorectal cancer recommendations. When it came to breast and cervical cancer, residents
205 chose USPSTF as their primary reference 83.3% and 81.9% of the time, respectively. For context, the next
206 closest for primary reference was American Cancer Society for colorectal and breast cancer, and

207 American College of Obstetrics and Gynecology for cervical cancer A preference towards using the
208 USPSTF has shifted from previously being the ACS in studies done in 1998 and 2000. These studies
209 showed that the guidelines put out by the ACS were most well-known by physicians and the public (9)
210 and that 89% of primary care physicians in Colorado rated the ACS guidelines as moderately to highly
211 influential compared to 33% rating USPSTF (10). Recent articles support this study's finding of the shift to
212 using USPSTF preferentially over ACS guidelines (7,8). There could be differences appreciated between
213 the most chosen sources among the three specialties in the study. When it came to colorectal cancer
214 recommendations family medicine residents chose USPSTF first then referred to AAFP or ACS. Internal
215 medicine residents referred to USPSTF first then ACS. General surgery residents chose USPSTF first then
216 National comprehensive cancer network. The same trends can be seen with each of the specialties for
217 breast cancer screening, but when it came to cervical cancer all three specialties first referred to USPSTF
218 then secondly to ACOG.

219 Residents were less able to recall the precise timing for screening for breast cancer in
220 comparison to cervical cancer. In fact, less than half of the residents correctly identified the age for
221 screening based on their primary resource. For average risk patients 40% of residents were correct on
222 their age recommendation based on their primary source (compared to 65% in colorectal and 87% in
223 cervical). For high-risk patients only 26% of residents were correct on their age recommendation
224 (compared to 59% in colorectal and 80% in cervical). This can be due to breast cancer recommendations
225 changing a month into data collection. In May of 2023, the USPSTF issued new recommendations for
226 breast cancer screening that lowered the age women should begin screening from 50 to 40 years old
227 (23). Cervical cancer recommendations were last changed by American Cancer Society (ACS) in 2020 and
228 by the USPSTF in 2018 (24). Colorectal cancer screening recommendations were last changed by the
229 USPSTF in 2021 (25). However, the recent change in breast cancer guidelines does not explain the
230 discrepancies in the other screening ages. Other interesting comparisons included correct answers of
231 when to screen based on specialty, gender, and age. As mentioned in the results section, general surgery
232 residents made more incorrect recommendations with only about half answering with the correct age
233 for screening based on their chosen resource, which may be explainable by general surgery interacting
234 with cancer diagnosis and treatment, but not being a primary care specialty. Additionally, when it came
235 to sex assigned at birth, males answered correctly 80% of the time for average risk colorectal screening
236 compared to females at 54.7%. When looking at their answers for pap smears females answered
237 correctly 92.86% of the time compared to males who answered correctly 79.31% of the time. For
238 mammography males answered correctly 46.67% of the time compared to females answering correctly
239 only 35.71% of the time. Females might be expected to know when to screen for breast and cervical
240 cancer better than males since they are the sex that gets screened. However, this data shows that is not
241 always the case. Despite sex assigned at birth, teaching should continue to be uniform, and providers
242 should be held to the same standards regardless of their sex.

243 Residents agree that conflicting cancer screening recommendations negatively impact patients'
244 quality of care and confidence in the healthcare system. We found that 47% of physicians believe
245 conflicting recommendations impact the quality of care; compared to 23% that don't believe it has any
246 effect. This finding is corroborated by another study that surveyed patient perceptions of multiple
247 screening recommendations (18). This survey stated patients were skeptical of data supporting the
248 recommendations and that differing recommendations were viewed as a reflection of limitation in data.
249 A report (19) stated that a clear understanding of what is recommended is made more difficult due to
250 inconsistencies between the recommendations of the various organizations. The authors speculate the
251 primary mission or objective of each governing body may hold some bearing on the broad direction of
252 their recommendations. For example, USPSTF has a mission to improve the health of people nationwide
253 by making evidence-based recommendations on effective ways to prevent disease, promote health and
254 prolong life (26). While the ACS has a mission more directed at improving the lives of people with cancer

255 (27). However, these missions should not impede the evidence that surrounds the best age to begin
256 screening for these cancers. Patients agree that streamlined guidelines could help avoid confusion and
257 would allow for a more universal message (18). Our data shows 70.8% of residents surveyed believe
258 multiple recommendations affect patients' confidence in the healthcare system. However, residents
259 were very split across the board when answering if multiple resources impacted their confidence in the
260 healthcare system with 40.5% answering somewhat or strongly disagree and 28.3% answering somewhat
261 or strongly agree. This data suggests providers would like to see more streamlined guidelines to prevent
262 patient confusion rather than their own.

263 Additionally, 56% of residents state they learned cancer screening recommendations during their
264 first 2 years of medical school education compared to what their attending physicians in 3rd or 4th year
265 medical school and residency taught them. This suggests that teaching cancer screening guidelines early
266 in undergraduate medical education may significantly impact residents' screening practice, and upmost
267 diligence should be used in the curriculum. A study done at the University of Pittsburgh showed the
268 impact of exposing medical students to radiology more frequently during preclinical years can change
269 their perceptions and interests towards the field (28). This same idea can be inferred regarding
270 preventative screening emphasizing the need for more focus on cancer screening in preclinical years.
271 The subsequent frequently selected source where they first acquired the screening guidelines was their
272 attending during residency, followed by the attendings they rotated with in medical school.

273 Lastly, the data from this study show 86% of family medicine and 60% of internal medicine
274 residents don't adjust age of pap tests based on onset of sexual activity. However, results differed for
275 general surgery residents with 57% saying they do adjust the age for beginning pap tests based on onset
276 of sexual activity. This can be attributed to the age demographics within each specialty, as general
277 surgery residents tend to fall within the older age brackets. Recommendations in 2003 issued by the
278 USPSTF, ACS, ACOG and the International Agency for Research on Cancer stated women should begin
279 annual cervical cancer screening within 3 years of sexual initiation or by age 21 whichever comes first
280 (29). It wasn't until 2008 that some governing bodies began to move to the current recommendation of
281 beginning screening at 21 years of age regardless of the age of their first sexual encounter. A study done
282 in 2013 stated that before 2012 ACOG, ACS and USPSTF differed on age to begin screening and how
283 often to screen. In 2012, however, all three organizations agreed on current recommendations (30). The
284 study also observed that in 2010 52.5% of women aged 18-20 were still getting their pap tests before
285 age 21. This implies there is a lag in when recommendations are released to when they are implemented
286 in physicians' practice. Given this change not uniformly occurring until 2012 and the knowledge that
287 there is a lag in the recommendations and when they are implemented suggests residents may have
288 learned older recommendations in medical school, or even in their practice, and have a lapse in when
289 they learn and implement the updated guidelines. We state earlier in this paper that medical school is
290 where most residents were initially taught these recommendations making that a critically influential
291 time in medical education on this matter.

292 We had a response rate of 18% for usable data which limits representation of the study
293 population. However, prior research has found lower response rates (compared to higher) did not
294 change survey results, particularly among physicians (31). While the survey was sent to all the residents
295 at each site, we only received responses from PGYs 1-3. Although this survey was sent to residents in
296 family medicine, internal medicine, and general surgery we received higher responses from family
297 medicine residents. Lastly, this study was just conducted at residency programs in Colorado due to the
298 convenient sample population. Moving forward studies should be done surveying residents across the
299 United States to view trends in knowledge of cancer screening recommendations, preferences on where
300 they reference these recommendations and their perception of confidence in the health care system.
301 Additional research should investigate perceptions of how non-uniform cancer screening may affect
302 treatment of cancer patients and to consider the use with the development of AI (Artificial Intelligence).

303 The sources AI/ChatGPT uses when asked guidelines may significantly influence patient and provider
304 information. The future direction of cancer recommendations will be something to closely watch and
305 technology progresses.

306

307 *Conclusion*

308 In conclusion, this study found that USPSTF was the most favored resource for family medicine,
309 internal medicine, and general surgery residents. Fewer than half of the residents accurately identified
310 the age for breast cancer screening according to their primary resource. Residents concur that
311 contradictory cancer screening recommendations have an adverse effect on patients' quality of care and
312 confidence in the healthcare system. There is also a broad range of places practice approach is learned,
313 however, many residents trended towards learning screening recommendations in medical school. It is
314 plausible that there is meaningful negative impact to providers and patients and further investigation
315 into more objective impacts to screening practice and patient behaviors is warranted.

316

317 **REFERENCES**

- 318 1. Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB, Davis EM, et al. Screening for
319 Colorectal Cancer. *JAMA*. 2021;325:1965.
- 320 2. Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Cancer
321 screening in the United States, 2019: A review of current American Cancer Society guidelines and
322 current issues in cancer screening. *CA Cancer J Clin*. 2019;69:184–210.
- 323 3. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence
324 and mortality of cervical cancer in 2018: a worldwide analysis. *Lancet Glob Health*. 2020;8:e191–
325 203.
- 326 4. Tabár L, Dean PB, Chen TH, Yen AM, Chen SL, Fann JC, et al. The incidence of fatal breast cancer
327 measures the increased effectiveness of therapy in women participating in mammography
328 screening. *Cancer*. 2019;125:515–23.
- 329 5. U.S. CDC. Cancer Screening Tests [Internet]. How to Prevent Cancer or Find It Early. 2023 [cited
330 2024 Mar 24]. Available from: <https://www.cdc.gov/cancer/dcpc/prevention/screening.htm>
- 331 6. Gelly J, Mentre F, Nougairede M, Duval X. Preventive services recommendations for adults in
332 primary care settings: Agreement between Canada, France and the USA—A systematic review.
333 *Prev Med (Baltim)*. 2013;57:3–11.
- 334 7. Han PKJ, Klabunde CN, Breen N, Yuan G, Grauman A, Davis WW, et al. Multiple Clinical Practice
335 Guidelines for Breast and Cervical Cancer Screening. *Med Care*. 2011;49:139–48.
- 336 8. Lewis JA, Petty WJ, Tooze JA, Miller DP, Chiles C, Miller AA, et al. Low-Dose CT Lung Cancer
337 Screening Practices and Attitudes among Primary Care Providers at an Academic Medical Center.
338 *Cancer Epidemiology, Biomarkers & Prevention*. 2015;24:664–70.
- 339 9. Hamblin J, Connor PD. Cancer screening guideline preference surveys: physicians' perceptions of
340 the American Cancer Society. *Tenn Med*. 1998;91:17–20.

341 10. Moran WP, Cohen SJ, Preisser JS, Wofford JL, Shelton BJ, McClatchey MW. Factors influencing
342 use of the prostate-specific antigen screening test in primary care. *Am J Manag Care.*
343 2000;6:315–24.

344 11. Mundschenk M-B, Krauss EM, Poppler LH, Hasak JM, Klingensmith ME, Mackinnon SE, et al.
345 Resident perceptions on pregnancy during training: 2008 to 2015. *The American Journal of
346 Surgery.* 2016;212:649–59.

347 12. Millman AL, Rebollar K, Millman RD, Krakowsky Y. Female Sexual Dysfunction – Awareness and
348 Education Among Resident Physicians. *Urology.* 2021;150:175–9.

349 13. Esfandiari N, Litzky J, Sayler J, Zagadailov P, George K, DeMars L. Egg freezing for fertility
350 preservation and family planning: a nationwide survey of US Obstetrics and Gynecology
351 residents. *Reproductive Biology and Endocrinology.* 2019;17:16.

352 14. Cooper Z, Meyers M, Keating NL, Gu X, Lipsitz SR, Rogers SO. Resident Education and
353 Management of End-of-Life Care: The Resident’s Perspective. *J Surg Educ.* 2010;67:79–84.

354 15. Chin S, Li A, Boulet M, Howse K, Rajaram A. Resident and Family Physician Perspectives on Billing:
355 An Exploratory Study. *Perspect Health Inf Manag.* 2022;19:1g.

356 16. Breuer B, Fleishman SB, Cruciani RA, Portenoy RK. Medical Oncologists’ Attitudes and Practice in
357 Cancer Pain Management: A National Survey. *Journal of Clinical Oncology.* 2011;29:4769–75.

358 17. Al-Imari L, Hum S, Krueger P, Dunn S. Breastfeeding During Family Medicine Residency. *Fam Med.*
359 2019;51:587–92.

360 18. Houston AJ, Hoover DS, Britton M, Bevers TB, Street RL, McNeill LH, et al. Perceptions of
361 Conflicting Breast Cancer Screening Recommendations Among Racially/Ethnically Diverse
362 Women: a Multimethod Study. *J Gen Intern Med.* 2022;37:1145–54.

363 19. Miller AB. Book Review Fulfilling the Potential of Cancer Prevention and Early Detection Edited by
364 Susan J. Curry, Tim Byers, and Maria Hewitt. 542 pp., illustrated. Washington, D.C., National
365 Academies Press, 2003. \$59.95. 0-309-08254-4. *New England Journal of Medicine.*
366 2003;349:1781–2.

367 20. Mandelblatt J, Yabroff R, Kerner J. Equitable Access to Cancer Services: A Review of Barriers to
368 Quality Care. *Cancer.* 2000;86:2378–90.

369 21. Gennarelli M, Jandorf L, Cromwell C, Valdimarsdottir H, Redd W, Itzkowitz S. Barriers to
370 colorectal cancer (CRC) screening in minority communities: inadequate knowledge of guidelines
371 by physicians in training. *Gastroenterology.* 2001;120:A604–A604.

372 22. Yu L, Peterson B, Inhorn MC, Boehm JK, Patrizio P. Knowledge, attitudes, and intentions toward
373 fertility awareness and oocyte cryopreservation among obstetrics and gynecology resident
374 physicians. *Human Reproduction.* 2015;dev308.

375 23. BCRF. What to Know About New Breast Cancer Screening Recommendations [Internet]. USPSTF
376 Breast Cancer Screening Guidelines 2024 | BCRF. 2024 [cited 2024 May 1]. Available from:

377 https://www.bcrf.org/blog/uspstf-new-breast-cancer-screening-guidelines-
378 2023/#:~:text=In%20May%202023%2C%20the%20United,50%20to%2040%20years%20old

379 24. NCI. ACS's Updated Cervical Cancer Screening Guidelines Explained. New ACS Cervical Cancer
380 Screening Guideline - NCI. 2020.

381 25. Kinkaid G. 45 Is the New 50 for Colorectal Cancer Screening. 45 Is the New 50 for Colorectal
382 Cancer Screening | Blogs | CDC. 2021.

383 26. US Preventive Services Task Force. USPSTF: The Primary Care Clinician's Source for Prevention
384 Recommendations [Internet]. USPSTF: The Primary Care Clinician's Source for Prevention
385 Recommendations. 2021 [cited 2024 May 1]. Available from:
386 [https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/task-force-](https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/task-force-resources/primary-care-clinicians-source-factsheet)
387 [resources/primary-care-clinicians-source-factsheet](https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/task-force-resources/primary-care-clinicians-source-factsheet)

388 27. American Cancer Society. Mission Statement [Internet]. Mission Statement | American Cancer
389 Society. 2022 [cited 2024 May 1]. Available from: <https://www.cancer.org/about-us/who-we-are/mission-statements.html>

391 28. Branstetter BF, Humphrey AL, Schumann JB. The Long-term Impact of Preclinical Education on
392 Medical Students' Opinions About Radiology. Acad Radiol. 2008;15:1331–9.

393 29. Henderson JT, Saraiya M, Martinez G, Harper CC, Sawaya GF. Changes to cervical cancer
394 prevention guidelines: effects on screening among U.S. women ages 15-29. Prev Med (Baltim).
395 2013;56:25–9.

396 30. US Centers for Disease Control and Prevention. Cervical cancer screening among women aged
397 18-30 years—United States, 2000-2010. MMWR Morb Mortal Wkly Rep. 2013;61.

398 31. Angier H, Bonuck KJ, McCrimmon S, Wiser AL, Huguet N, Carney PA. An Exploratory Study of
399 Primary Care Clinicians' Perspectives on 2021 New and Updated Cancer Screening Guidelines. J
400 Prim Care Community Health. 2023;14:215013192311649.

401